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Actin, a ubiquitous protein essential for numerous cellular functions, is found in all eukaryotes. Despite
extensive research across molecular to organismal scales, fundamental questions persist regarding the
regulation of dynamic actin architectures, their interaction with membranes, and their mechanical prop‐
erties. Characterizing the factors governing these processes presents significant challenges. This review
emphasizes the value of simplified, reconstituted systems in addressing these unresolved questions. We
particularly highlight the critical importance of macroscopic, network-level reconstitutions for tackling
these issues. We first describe the available methodological toolkit for (1) controlling actin polymeriza‐
tion spatiotemporally and (2) confining actin networks within closed environments to examine boundary
constraint effects or the impact of limited component availability on network properties. We then review
studies employing these reconstituted systems to investigate how actin architecture influences various
processes and how dynamic actin structures are established and maintained. Further, we discuss how
network-level reconstitutions have enhanced our understanding of actin networks’ mechanical properties
and their interaction with the lipid membranes. Throughout the review, we discuss future perspectives
for each topic and explain how macroscale reconstitutions can provide deeper mechanistic insights into
actin-related processes.

Introduction
Actin is ubiquitous, being present in all sequenced eukaryotic organisms [1], and is found at very high
concentrations ranging from 10 to 150 µM depending on cell type [2–5]. With the help of actin-binding
proteins, actin filaments self-organize into different architectures for key functions in the cell [4,6,7]. Since
its discovery in 1942 by Albert Szent-Györgyi [8], actin and its molecular partners have been intensively
studied from the molecular scale to the organism scale [9–14]. Actin networks play key roles in shape
maintenance, generation of forces for cell migration, and generation of forces to separate cells after division
or endocytosis [10]. However, despite this intense research, many aspects of the actin cytoskeleton are still
not fully understood, particularly at the mechanistic level. This includes the following questions:
• How are the sizes of actin structures defined?
• How is the balance between assembly and disassembly rates achieved to maintain the various sizes and

turnover rates of the different actin networks?
• How are actin networks with various sizes and turnovers assembled from a common pool of mono‐

mers?
• How are those various network architectures dynamically transformed in vivo while keeping their

integrity?
• How do actin filament mechanics or network geometry affect the activities of other actin-binding

proteins?
• How does membrane geometry affect actin assembly? And reciprocally, how does actin architecture

affect membrane properties?
Addressing these questions in a cellular context is extremely challenging. Indeed, the complexity of

the cell’s interior, with hundreds of molecular actors present at the same time, makes it difficult to
gain a mechanistic understanding of the processes at work in the cell. This is why, in this review, we
will discuss the importance of using reconstituted systems to answer these major questions [15–18].
More specifically, we will explain why macroscopic reconstitutions, at the level of the networks, are key
for addressing those questions. Here, we will focus exclusively on actin-based processes and how they
have been investigated using purified proteins. Indeed, cell extracts provide an alternative approach for
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generating actin structures, as many relevant proteins are already present in the system: actin comet
tails, contractile rings, and cortices have been successfully generated and studied in cell extracts [19–24].
However, studies using purified proteins offer distinct advantages for mechanistic investigations, as they
allow for precise determination of the minimal set of components and their concentrations required for a
given process.

Importance of single-filament studies and CryoEM
approaches to uncover molecular details of actin dynamics
Actin dynamics have been extensively studied in vitro through bulk experiments, which served to
determine the effects of regulatory proteins on actin assembly and disassembly and to measure the
rate constants of actin with its main partners [25–28]. The studies on individual filaments using first
fluorescence microscopy and then TIRF (Total Internal Reflection Fluorescence) imaging [29,30] as well
as the development of microfluidic systems [31] complemented these approaches. They allowed to study
separately the steps of assembly [3,32–36], disassembly [37–42], and recycling [43–45], all key for actin
dynamics. Experiments on individual filaments also identified specific properties such as branch formation
[46,47], mechanical responses [48–50], or interaction with microtubules [51–54] that are not accessible
with bulk experiments [55,56]. These studies have been complemented by single-molecule studies, which,
for example, have given a better view of the branch formation by WASP and the Arp2/3 complex [57,58].
More recently, the drastic improvement of cryo-electron microscopy resolution [59] allowed to gain new
molecular details about actin polymerization [60,61] and its dependence on actin-associated proteins [62–
66]. Altogether, these studies have provided valuable insights into the interactions between actin and its
binding proteins, the kinetics of their associated reactions, and other molecular mechanisms involved in
these interactions. However, to understand how these proteins work together to control the dynamics of
actin networks—and to address the key unresolved questions mentioned earlier—it is essential to extend
reconstitution studies to the mesoscale. This scale bridges the gap between discrete molecular complexes
and the intracellular environment [67–69].

Why go for macroscopic reconstitutions?
Reconstituting dynamic actin networks in vitro at the network level offers several advantages. First, it is
well-established that actin-binding proteins can exhibit different behaviors depending on the architecture
of the network they interact with [6]. Therefore, reconstituting networks is essential for understanding
how these proteins bind differently depending on the network’s structure. Additionally, reconstituting actin
structures in three dimensions has revealed notably how applied forces influence network architecture
and biochemical dynamics [70,71]. It is also widely recognized that physicochemical parameters play key
roles in shaping the properties of the cytoskeleton within the cell [72–76]. Factors such as macromolecular
crowding and viscosity [68,69,73,77] or energy availability [69] are, for example, critical parameters to
consider when studying cytoskeleton-based processes. Finally, the effect of local and global depletion of
actin and actin-binding proteins on the size and dynamics of actin networks is also an important factor to
consider.

Importance of the environment: the cell as a “constrained”
environment
In cells, the reaction space is in the micrometer range. This implies that the number of molecules is small
and potentially limited and that the boundaries can be reached by the various structures built into the
cell. To assess the impact of these physicochemical parameters on cellular processes, the reconstitution
of an environment mimicking the cell’s cytoplasm is of paramount importance. This environment is
often established with confinement, achieved through microwells, water-in-oil droplets, or vesicles [78].
Most studies employ confinement for mechanical purposes, for example, to observe how it affects actin
filament curvature [79–83]. In this case, the boundary condition is introduced to guide the spatial
organization of the system. Recently, some studies have proposed using confinement to limit the amount
of available components (similar to cellular conditions) and to examine how this global limitation affects
the maintenance of actin dynamics over extended time periods and the coexistence of competitive actin
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networks [84,85]. The confinement of actin structures will also be critically important for studying the
effects of local protein depletion mentioned previously.

Toolbox: what kind of macroscopic reconstitutions?
To properly reconstitute actin networks, actin polymerization must be spatiotemporally controlled. In cells,
actin polymerization and consequently the formation of the actin network is regulated locally by various
activators and nucleators [86]. Over the years, different laboratories have developed various methods to
spatiotemporally control the actin polymerization. Currently, the main tools used in reconstituted systems
include beads and micropatterns, covered with lipids and/or activators for actin polymerization (WASP or
formins, for example).

Figure 1: Toolbox for macroscopic reconstitutions.

(A) Strategies for controlled actin polymerization in space and time. Top: micropatterns are obtained by burning a Silane PEG layer and then adding lipids and/or the NPF to
localize the actin polymerization on the micropattern. Bottom: NPF can be coated on a bead (polystyrene or glass) or on a vesicle. The force generated by the actin network
growth triggers the bead or vesicle movement. (B) Strategies for the design of confined environments with various sizes and properties. Abbreviations: NOA: Norland Optical
Adhesive, GUVs: giant unilamellar vesicles. SLB: Supported Lipid Bilayer. NPF: Nucleation-Promoting Factor.
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Protein photoactivation
In order to localize actin network formation or function, the first option is to photoactivate actin
monomers [87] or motors [88,89]. In this case, the activation is transient (defined by the illumination
timing) and the size and shape of the activated area are controllable.

Micropatterns
Micropatterning consists of burning a selected region on a passivated surface, in order to create “spots”
of actin polymerization. Reymann et al. [90] developed this method in order to localize a nucleation-
promoting factor (NPF) and generate branched networks of various shapes in controlled locations. The
localization of the NPF triggers the generation of specific architectures in 2D [91,92] or in 3D [93,94]. More
recently, the development of micropatterns covered with lipid bilayers allowed to mimic the activation
of actin polymerization close to a membrane [95–97]. In the case of micropatterns, the activation is
permanent and static while size and shape of the pattern remain controllable during the burning stage
(Figure 1A).

Beads and vesicles
The reconstitution of actin networks around beads or vesicles comes from the historical reconstitution
of the sustained motility of the bacterium Listeria monocytogenes with purified proteins [98]. The
reconstitution of actin structures around beads was first done in egg extracts [19,99–101] and then with
purified proteins [102]. By coating the bead with an NPF and putting it in the appropriate mixture of
proteins [102,103], a comet of branched actin filaments grows from the bead, with actin polymerization
propelling the bead forward (Figure 1A). One of the main advantages of this assay is that the movement
of the bead provides a reliable readout of actin dynamics. Additionally, the size, shape, and intensity of
the network can be easily measured using fluorescence microscopy [84]. Activation is permanent as the
NPF coating the bead is constitutively active, and bead size and shape can be modified and controlled
[77,101]. The reconstitution of motility using NPF-coated vesicles in egg extracts has been used to probe
the mechanical forces exerted by F-actin networks on membranes (Figure 1A [104,105]).

Various compartments can be used for mechanical constraints and
component limitations
Microwells (or microfabricated chambers, Figure 1B) have been used for a long time to create 3D
confinement of microtubules [106]. They can be constructed using lithography methods, and the walls
of the chambers can be easily functionalized with specific proteins or lipids [106,107]. Actin has been
successfully encapsulated in microfabricated chambers [79,108].

Vesicles (or liposomes) are based on a lipid bilayer made of phospholipids (Figure 1B). They are
currently the first choice of encapsulation for people working in the field of synthetic cell (which aims
to understand how cells work by reproducing their molecular mechanisms [109,110]), and actin has
also already been successfully encapsulated in liposomes [111]. However, even if various methods were
developed to produce the vesicles, protein encapsulation is challenging and not always reproducible
[83,112–114]. Another alternative is to use water-in-oil droplets (Figure 1B), which can be more easily
created and filled with proteins. Phospholipids are usually dissolved in oil to stabilize the emulsion
interface: they act as a surfactant, reducing the surface tension between the oil and water phases, and thus
reducing droplet coalescence [115]. With this method, the outside medium being oil, exchanges with the
outside medium are prohibited. The main advantage of droplets and vesicles is that they can be deformed
[80] to modify their shape and see the influence on protein organization. Therefore, they are a potent tool,
in the field of synthetic cells, to tackle the challenges of the reconstitution of motility and cell division, for
example [116].

Mimicking the proximity with a membrane: lipid bilayers
Many processes related to actin cytoskeleton function happen close to a membrane. Supported lipid
bilayers (SLBs) are a powerful system to mimic the plasma membrane [117]. They consist of a glass
coverslip functionalized with various lipids that are separated from the substrate by a thin layer of water to
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allow the lateral mobility of lipids. They can be easily imaged with TIRF microscopy and they have been
combined with the other tools described above to create lipid micropatterns, for example [96].

Combination of these approaches
Interestingly, all the above approaches can be used in combination. Indeed, SLBs have been adapted for
the design of lipid micropatterns to study the effect of frictional forces on actomyosin contractility [96],
NPF-coated beads or micropatterns can be introduced into microwells to study the effect of a limited
amount of components [84,85], and giant unilamellar vesicles (GUVs) can be spread on micropatterns to
see the influence of vesicle shape on actin orientation [118,119]. The use of various lipid compositions that
spontaneously segregate into domains also makes it possible to target actin polymerization in a specific
domain on GUVs [120].

What kind of questions have been and can be addressed
using macroscopic reconstitutions?

Influence of actin architecture on various processes
Context. In cells, various architectures coexist and share the same pool of actin monomers and actin-
binding proteins [6,7,121]. Understanding how the same pool of proteins can mediate various functions in
the cells has been a key question in the actin cytoskeleton field for the last decade.

Reconstitution of various architectures on micropatterns has made it possible to investigate the role
of several factors on network contractility and how it leads to global shape changes. Indeed, architecture
(branched or linear network [91,92]), connectivity (degree of filament cross-linking [92,122]), boundaries
(zone in which myosin is active [88]), or friction between the actin network and its interacting substrate
[96] are all factors that influence global actin network contraction. Large-scale reconstitution of various
architectures on lipid bilayers gave insights into the impact of network architecture on the generation
of stresses [123] and showed that contractility is highly cooperative and telescopic (i.e. that the speed
of contraction is proportional to the size of the region where myosin activity has been activated) [89].
By reconstituting actomyosin networks in oil droplets, Sakamoto and Murrell [124] showed the impact

Figure 2: Mechanistic details obtained on the influence of actin architecture and turnover using macroscopic reconstructions.

(A) Actin architecture (linear bundles or branched network) has been shown to influence protein binding such as capping protein or tropomyosin and alpha-actinin. (B) Actin
turnover has been looked at from several angles. Motility of branched or linear networks was reconstituted from different components. Then, NPF density and disassembly
rate were shown to influence the size of branched networks. Fascin-cross-linked bundles are protected from ADF/cofilin disassembly. Finally, recycling has been shown to be
necessary for long-lived branched networks in a dynamic steady state.
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of network architecture on energy consumption by myosin. In a similar fashion, reconstitutions on
micropatterns allowed to show the selectivity of actin architecture on disassembly of the network [125]
and the impact of network density on Actin Depolymerization Factor (ADF)/cofilin-mediated disassembly
[126] (Figure 2B).

The binding and localization of proteins have also been addressed in the context of the competition
between branched and linear networks thanks to the reconstitution of branched and linear networks on
polystyrene beads [127,128]. In addition, reconstitution of branched and linear actin networks on beads
has demonstrated that profilin—an abundant actin monomer-binding protein that inhibits spontaneous
filament polymerization—restricts the growth of branched networks while promoting the growth of linear
networks [129,130]. With the same system, Suarez et al. and Winkelman et al. [131,132] showed how
protein competition and sorting depend on actin architecture (Figure 2A).

The reconstitution of branched networks on micron-sized beads has also provided valuable insights into
the functional interaction between the various molecular players involved in these networks [133–139].
On beads’ surface, two different proteins can be localized, therefore allowing to decipher the effect of
proximity between proteins (and therefore subsequent binding) on the formation of dendritic networks.
For example, by co-localizing lamellipodin and VCA on a glass bead coated with a lipid bilayer, Hansen
and Mullins [140] proposed that lamellipodin slows the assembly of branched networks. In another
study, by functionalizing polystyrene beads simultaneously with an activator of the Arp2/3 complex and
Myosin-I, Xu et al. [141] showed that myosin I can boost the force-generation capacity of a branched
network (Figure 2A). All these examples show that reconstitution of actin networks on micropatterns or
around micron-sized beads is a versatile system to address the effect of actin architecture on the binding
and localization of actin-related proteins.

Perspectives. Taking into account, in the reconstitution, the association of actin-binding proteins on
various actin isoforms and on actin with various post-translational modifications will certainly be of
primary importance to understanding the formation of networks with various biochemical identities in
the cell [142]. In addition, how the shape and function of actin networks evolved and diversified in the
eukaryotic lineage is still poorly understood [1]. Understanding how different organisms have evolved
different actin dynamics for their specific functions has begun to be addressed with structural and single-
filament methods [143–145] but could now easily be tackled at the network scale. This will make it possible
to assess the impact of these different dynamics on the functions and properties of different actin networks
[1,146].

Interaction between actin and microtubule networks
It is well known that the interaction of actin filaments with microtubules is critical for several cellular
functions [147]. The set-up of biochemical conditions to reconstitute simultaneously dynamic actin
networks and dynamic microtubules [148] was key for showing how actin network architecture regulates
microtubule growth and dynamics [53,149,150], how actin filaments can guide microtubule organization or
movement and act as a structural memory [151,152], and how actin architecture can mediate centrosome
positioning [107] without the need for cross-linker between the two networks. Engineering of a protein
that links growing microtubule ends to actin filaments (TipAct [51]), showed that growing microtubules
can be captured and guided by stiff actin bundles, leading to global actin-microtubule alignment. Thus,
the simultaneous reconstitution of actin and microtubule networks has shown that actin can impose its
organization on microtubules, and vice versa.

Perspectives. The molecular mechanisms behind the effects of actin–microtubule interaction mentioned
above are not yet well understood. The hypothesis of a frictional force between actin and microtubule fibers
has been put forward to explain the impact on polymer dynamics when the two networks align [53,54]
but still needs further validation. In addition, future works studying the positioning of the two networks in
relation to each other and the potential impact on signaling [21] are exciting avenues to better understand
the cross-talk between those two networks in the cell.

Dynamic/turnover of structures
Context. The dynamic nature of actin architectures is of paramount importance when cells have to
adapt to a changing environment [153–155]. In cells, the different coexisting architectures have various
turnover rates, depending on their functions, with very fast turnover rates for lamellipodial or endocytic
structures and slower turnover rates for stress fibers, for example [156]. However, understanding how these
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different turnover rates are established and maintained remains a challenge, and how the assembly and
disassembly rates are coordinated to maintain a constant structure size through various feedbacks is still
unclear. Therefore, the reconstitution of structures in a dynamic steady state is of primary importance to
understand the basic mechanisms of actin turnover [156].

Mc Call et al. [157] reconstituted entangled actin filaments and showed the impact of nonequilibrium
turnover on the dynamics and mechanics of the filaments. In particular, they demonstrated that the
severing protein ADF/cofilin promotes fluidization of the network. On another hand, Guo et al. [158]
showed that actin-binding proteins CAP (Cyclase-associated Protein) and Abp1 (Actin-binding protein 1)
can drastically coalesce branched actin networks into bundles.

Studies reconstituting branched or linear actin networks on beads or micropatterns have provided
valuable insights into the different steps of the turnover cycle. Reconstitution of branched networks around
WASP-coated beads showed the minimal ingredients necessary for the formation of star-like networks,
resembling the filopodia found in cells [100] (Figure 2B). The reconstitution of bacteria motility with
purified proteins showed the dependence on the capping protein for the motility velocity [98]. Further
work on branched networks reconstituted on beads demonstrated how capping protein increases the rate
of motility by promoting more frequent filament nucleation [134]. Bead motility assays also allowed to
point out the key role of ATP hydrolysis in branched actin network assembly and disassembly [84,159].
Interestingly, the formin-based motility does not require capping protein, which even causes arrest of
formin-coated beads [160] (Figure 2B). Regarding the disassembly step, reconstitution of actin turnover
on beads or on micropatterns has been instrumental in understanding how stochastic severing by ADF/
cofilin facilitates the network turnover by releasing large parts of the actin bundles [38,103] and how the
disassembly rate depends on the actin network density and architecture as well as on cofilin concentration
[125,126]. By reconstituting linear bundles cross-linked by fascin, Chikireddy et al. [161] showed that
fascin cross-linking protects the bundles from ADF/cofilin disassembly (Figure 2B). Moreover, Pollard et al.
[162] identified that a mixture of seven purified proteins was sufficient to reconstitute cable formation with
a polarized turnover. Finally, coating of beads with NPF for branched actin networks as well as formins
showed a synergic activity of the two proteins and a formin-mediated protection from debranching by
ADF/cofilin [163]. Until recently, the recycling step has been overlooked in macroscopic reconstitutions.
However, recent studies combining bead motility assay and confinement in microwells demonstrated how
recycling is necessary to ensure long-lived turnover of actin networks, and how this turnover allows several
competitive structures to coexist in the same environment [84,85].

Perspectives. The different steps of actin turnover (assembly, disassembly, and recycling) are now
well understood at the molecular level. Even if some studies started to address their coordination with
reconstituted systems, how these steps are balanced and, more precisely, what types of feedback exist
between them is still unclear and requires more exploration. The hypothesis that the size of the available
actin monomer pool serves as feedback for the assembly rate has been proposed by different studies in cells
[129,164] and in reconstituted systems [84] but still needs further validation. Furthermore, understanding
how architectures with different sizes and turnover rates share the same limiting pool of proteins remains a
key unanswered question. Theoretical studies have proposed possible mechanisms behind dynamic scaling
[165–169] and the reconstituted systems at the mesoscale mentioned above have the power to test the
validity of those mechanisms. More precisely, with the use of confined environments, it is possible to finely
tune the number of proteins, as well as their concentration or density, and the physical properties of the
medium, and therefore to study the impact of these factors on the size and dynamic of different actin
architectures.

Mechanical properties of actin networks
Context. Cells are intrinsically subjected to several mechanical constraints, and they also produce forces
during the processes of morphogenesis, migration, endocytosis, organelle transport, or cell division [7].
Historical reconstitutions of entangled and branched networks and their analysis with passive or active
micro-rheology tools have been key to understanding the viscoelastic properties of actin networks [170–
172]. Addition of myosin and cross-linkers to these networks allowed to show that contractility occurs at
optimal concentrations of motors and cross-linkers [92,173–175].

Then, the reconstitution of actin networks around beads or vesicles has been key to obtaining a better
understanding of the forces generated by a growing actin network. Indeed, by first using beads coated with
ActA and introduced in HeLa cell extracts, Noireaux et al. [176] estimated that forces exerted by an actin
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gel are about 10 pN. Subsequent studies with purified proteins showed the impact of physical properties
on the growth of branched networks [77,102] and the tight coupling between biochemical and physical
properties of the networks [177,178]. Moreover, this type of assay allowed to show that the symmetry
breaking required to move the bead is based on the release of elastic energy, analogous to the fracture of
polymer gels [179,180] (Figure 3A) and that the elastic gel exerts a friction force on the bead [181,182].
Reconstitution of motility on deformable objects (GUVs) coated with an activator of the Arp2/3 complex
showed that the deformability of the object and the mobility of the activator at the lipid surface affect
dynamic and structural parameters of the actin networks [183,184]. Altogether, these assays provide a
better understanding of the mechanisms underlying motility initiation [134,185].

Reconstitution of branched actin networks growing from micropatterns in 3D, combined with an AFM
tip to apply force on the growing network, allowed showing in a very elegant manner that growth of a
branched network against a load leads to a denser network and to an adaptation of the architecture [70,71]
(Figure 3B), similarly to what has been described in cellular systems [153,186]. In addition, the growth of
branched networks in 2D from similar micropatterns with different densities of NPF led to the generation
of heterogeneous networks; this network heterogeneity was shown to impose a direction in motility [187].

The generation of forces relies a lot on the adhesive properties of the cells. This aspect has been studied
by using micropatterns functionalized with the talin protein. These studies revealed that actomyosin-
dependent dynamics of the talin–vinculin complex and activation of vinculin by stretched talin induce a
positive feedback that reinforces the actin–talin–vinculin association, and that actomyosin force triggers
protein binding on the mechanosensitive protein talin [188,189]. Study of vinculin’s interaction with
branched networks grown from micropatterns showed that vinculin can bundle dendritic actin networks at
nascent adhesions [190].

Perspectives. Altogether, the experiments on beads and on micropatterns shed some light on the
mechanical properties of branched actin networks, a key feature for motility, endocytosis, and more. In
the next years, the reconstitution of motility from purified proteins will certainly help to understand
the minimal elements necessary for cell movement and the mechanisms associated with different types
of migration [191]. In this context, in order to understand the molecular mechanisms and minimal
requirements for cell motility, the reconstitution of adhesion will be of primary importance. First steps
toward this adhesion reconstitution has been done by binding talin at the surface of GUVs and by looking
at the effect of the presence of talin, as well as kindlin and actomyosin, on the ability of the system to cluster
integrins [192].

Actin interaction with membrane (2D and 3D)
Context. Interaction between actin and the plasma membrane plays a key role in many biological processes
(cell division, cell migration, endocytosis, cell spreading, membrane trafficking, long-range coordination of
cell polarity, etc.) [193–198]. Actin is present below the membrane (forming the cortex) and the plasma
membrane is a big spot of actin polymerization regulation (via the Pip2, Rho pathways, etc.). For a cell to
move, actin assembly must generate a force sufficient to move the plasma membrane. There is a reciprocal
interaction between actin and the cell membrane: indeed, actin polymerization can increase membrane
tension but actin polymerization can also be triggered at the curved regions (via the recruitment of BAR
proteins, for example) [197].

Many studies have reconstituted actin networks close to lipid membranes [117]. By using SLBs in two
dimensions, Murrell and Gardel, and Vogel et al. [199,200] showed that the extent of actin adhesion to a
membrane can regulate the coupling between network contraction and F-actin severing. In more recent
studies, variation of lipid composition was shown to have an impact on the connectivity to the membrane
[201] and VASP (Vasodilator-stimulated phosphoprotein) binding on lipids was shown to facilitate the
formation of large bundles [202]. By adding myosin II to an actin cortex polymerized on a lipid bilayer,
Sonal et al. [203] observed a dynamic reorganization of the actin network. In addition, it was shown
that linkage between branched actin network and lipids can modulate the friction and orient the axis of
contraction [96]. On the other hand, it was also shown that actin polymerization can reorganize lipids (and
promote phase separation) [204–206]. Indeed, the use of SLB allows to see how large-scale reorganization
of proteins can have an impact on actin polymerization. For example, Banjade et al. [207] showed that
attachment of nephrin to a lipid bilayer promotes multivalent interactions and then phase separation of the
protein with its cytoplasmic partners Nck and N-WASP. These clusters can then assemble branched actin
network, therefore giving hints about the regulation of local actin assembly at membranes.
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In three dimensions, the interactions between actin and membranes have mainly been studied with
GUVs [208] but water-in-oil emulsions stabilized with lipids are also a good option to study actin–
membrane interactions. Many studies focused on the generation of cortex-like structures outside or inside
the vesicles (Figure 3C). The study of Pontani et al. [209] was the first to reconstitute an actin cortex inside
a liposome. Next, Carvalho et al. and Loiseau et al. [210,211] added myosin to the cortex-like structures
to generate cortical tension, the level of which is determined by the amount of motors, the connectivity
of the network, and its attachment to the membrane. They observed remodeling of the actin cortex as
well as changes in membrane shape (Figure 3C). Subsequent studies looked at the effect of actin-binding
proteins like cross-linkers [212–214] or capping protein [215] on vesicle shape. Altogether, these studies
demonstrated the importance of actin network connectivity and membrane attachment to drive large-scale
shape changes (Figure 3C). Those shape changes of the vesicles have also been widely studied in the context
of protrusion generation. For example, Liu et al. [216] showed that branched actin networks can deform
a liposome membrane in “filopodia-like” bundled actin protrusions. Then, Simon et al. and Allard et al.
[217,218] demonstrated that reconstitution of branched actin network (with capping protein) is sufficient
to drive inward and outward membrane deformation. Moreover, heterogeneities in the actin network can
favor membrane protrusions [219]. Actin networks can sense membrane curvature [83], and actin rings
formed inside water-in-oil droplets spontaneously positioned at the equator of the droplet [220]. Recently,
a few studies showed that actomyosin rings, targeted at the equatorial plane of vesicles, could deform the
vesicles [221,222]. Moreover, addition of a membrane curvature sensor can recruit the actin polymerase
VASP to assemble actin filaments locally on membranes and then generate protrusions that are similar
to filopodia [223].Therefore, reconstitution of assembly-based actin network inside deformable vesicles
revealed a large range of deformations, which can be compared with those observed in cells. In addition,
different methods give quantitative measures of the magnitude of those forces, which is necessary for a
mechanistic understanding of the actin-based processes associated with the membrane.

Interaction of actin with membrane also happens in cargo transport where most of the cargos are
vesicles. Interaction of actin filaments with motors transporting cargos is important for polarized transport
of material in the cell [224]. By reconstituting liposomes transported by myosin Va in a 3D actin
network, Lombardo et al. [225] demonstrated the impact of actin architecture, and therefore of actin

Figure 3: Mechanistic details gained on mechanical properties of actin networks and on their interaction with the membrane using
macroscopic reconstitutions.

(A) When coated with an NPF and placed in a mix of purified proteins, an actin network grows around the beads and then accumulates elastic strain. The release of this stress
triggers a symmetry breaking and therefore the bead movement. (B) Networks grown from micropatterns in three dimensions were shown to adapt their density, depending
on the applied load. (C) Actin networks were polymerized inside and outside of GUVs and were shown to break their symmetry in the presence of molecular motors. Depending
on the protein present in the experiment, membrane deformation, filopodia-like protrusions, or actomyosin rings can be observed.
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filament polarity, on the transport of liposomes. Moreover, reconstitution of composite actin–microtubules
networks with myosin1C and kinesin1 motors showed the influence of the motors on the vesicles
deformation and therefore on the tubule formation [226].

Perspectives. As discussed in [227], there is still the need to precisely decipher the mechanisms
of actin assembly at the membrane, and more precisely the mechanisms of the interaction between
actin-membrane linkers and actin-associated proteins for the regulation of polymerization. In addition,
understanding how actin-membrane linkers propagate membrane tension will give better insights for all
the processes involving actin–membrane interaction. Moreover, in the field of synthetic cell development,
reconstitution of dynamic actin networks inside vesicles is still a challenge. Reconstituting networks able to
generate sufficient forces to divide the vesicle is an even bigger but exciting challenge.

Future perspectives
Thanks to advances in biochemistry, the study of single filaments, and electron microscopy, many of
the molecular players involved in actin structures are now well characterized and their functions better
understood. With the tools described above, it is now conceivable to reconstitute any actin architecture
under physicochemical conditions that mimic those found in cells, using a limited number of components.
This approach could make it possible to identify the minimal set of ingredients required for key cellular
processes such as motility, endocytosis, and division. However, a major limitation is the number of proteins
that can be introduced simultaneously into a closed environment. Beyond the technical challenge of precise
pipetting, the incorporation of multiple proteins leads to an exponential increase in the number of possible
concentration combinations, which can exceed practical experimental capabilities. To meet this challenge,
predictive mathematical models could prove invaluable. These models would make it possible to identify
the key parameters to be varied, thus reducing the space of parameters to be experimentally tested. They
would also make it easier to interpret the data, which becomes increasingly complex as the number of
proteins and reactions in the assay increases. Alternatively, to test multiple combinations of parameters and
protein concentrations, automated systems could be developed. Automation would allow precise pipetting
and enable parallel experimentation, significantly increasing throughput and efficiency.

As mentioned above, the incorporation of physical parameters in the reconstitutions will certainly be
of primary importance. Indeed, parameters like osmolarity, viscosity heterogeneity in the cytoplasm, or
pH gradients were shown to be crucial for cytoskeleton-based processes in cellular studies [74,228–230].
Moreover, a cell is not a homogeneous medium, so incorporating heterogeneity into reconstituted systems
will also be of paramount importance. This can be achieved by confining some reactions to certain
compartments (with or without membrane) [231,232] or by incorporating spatio-temporally controlled
signaling [21,233–236]. On a longer and more technological timescale, reconstitution of actin at the
macroscopic level could find applications in electronics [93] or in living materials fields [237].

The combination of studies reconstituting networks at the macroscopic level, with work studying
actin at the single-molecule or single-filament level, and with research studying actin at the cellular or
organismal level, provides a multi-scale approach and powerful tools for linking the different scales of
actin complexity. The use of these complementary approaches will certainly enable us to fully answer the
questions mentioned in the introduction in the years to come.
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