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Dynamic stability of the actin ecosystem
Julie Plastino1,2,* and Laurent Blanchoin3,4,*

ABSTRACT
In cells, actin filaments continuously assemble and disassemble
while maintaining an apparently constant network structure. This
suggests a perfect balance between dynamic processes. Such
behavior, operating far out of equilibrium by the hydrolysis of ATP, is
called a dynamic steady state. This dynamic steady state confers a
high degree of plasticity to cytoskeleton networks that allows them
to adapt and optimize their architecture in response to external
changes on short time-scales, thus permitting cells to adjust to their
environment. In this Review, we summarize what is known about the
cellular actin steady state, and what gaps remain in our understanding
of this fundamental dynamic process that balances the different forms
of actin organization in a cell. We focus on the minimal steps to
achieve a steady state, discuss the potential feedbackmechanisms at
play to balance this steady state and concludewith an outlook onwhat
is needed to fully understand its molecular nature.
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Introduction
A key property of most living systems is their ability to move and/or
change shape according to environmental cues. This is instrumental
for the cell or the tissue to carry out its biological program, including
cell processes such as division and motility, and developmental
processes like morphogenesis. Understanding the dynamic steady
state of actin is a major challenge in cell and developmental biology
because actin is a key player and driving force in the construction of
the complex and dynamic scaffolding that makes up the internal
architecture of eukaryotic cells (Blanchoin et al., 2014; Chhabra and
Higgs, 2007). Whereas many molecules that are involved in
building the actin cytoskeleton are known, the basic rules that
control the coordinated dynamics of structures that exist at the
same time in the cell, such as branched networks, parallel bundles
and antiparallel contractile bundles, are still poorly understood.
The dynamic steady state of actin has four facets: (1) nucleation
(formation of actin dimers or trimers), (2) elongation and capping
(controlled polymer growth), (3) disassembly (breakdown of actin
structures) and (4) recycling (replenishment of the pool of actin
monomers that are charged with ATP) (Fig. 1). Here, we consider
each facet in detail and highlight the potential existence of feedback
mechanisms that could balance the dynamics of cellular actin, and
the need for reconstitution experiments to fully dissect the balance
of the steady state of actin.

The pool of actin monomers
The elementary building block for actin assembly is the actin
monomer. The concentration of actin monomers is quite variable in
different living systems, ranging from potentially as low as 0.01 µM
in the yeast Saccharomyces cerevisiae to 300 µM in unactivated
platelets (Karpova et al., 1995; Pollard et al., 2000). Since the rate of
actin assembly is directly proportional to the concentration of
monomers (Pollard et al., 2000), this variability means that the
dynamic steady state of actin is not the same in different cell types;
actin filaments could potentially grow orders of magnitude faster in
platelets than in yeast.

In the cell, most of the pool of polymerizable actin is bound to
profilin (Fig. 1 and Kaiser et al., 1999). However, some actin
monomers in a given cell type might not be polymerizable as they
can be sequestered by proteins such as thymosin β4 (Tβ4) (Fig. 1
and Pantaloni and Carlier, 1993). In this context, determining the
exact concentration of polymerizable actin at a given time is
challenging (Raz-Ben Aroush et al., 2017) as the balance between
sequestered and polymerizable actin during dynamic actin assembly
is not well characterized (Skruber et al., 2018). In addition, Tβ4 has
been proposed to play an active role in preventing monomer
incorporation into branched networks and in targeting cytosolic
actin monomers to formin-mediated assembly at the leading edge of
cells (Vitriol et al., 2015). This polymerizable pool of actin
monomers needs further characterization at the cellular level, but
also at the subcellular level – at sites of active actin assembly –
where the pool of polymerizable actin can become depleted
(Boujemaa-Paterski et al., 2017). In addition, different actin
networks compete for actin monomers, and this is crucial for
determining network density and size (Burke et al., 2014; Suarez
and Kovar, 2016). To understand the landscape of the monomer
pool in a complex actively polymerizing network, as found in
keratocyte fragments (Raz-Ben Aroush et al., 2017), it will be
necessary to use methods such as fluorescence recovery after
photobleaching (FRAP) or photoactivation and/or photoconversion
experiments coupled with mathematical modeling to assess actin
monomer dynamics in different in vivo contexts (Skruber et al.,
2018) and/or to use cell-size confinement to generate reconstituted
systems with well-defined but limited sources of actin monomers.
Given the importance of the local polymerizable actin concentration
for determining actin dynamics, evaluating the pool of
polymerizable actin – and potentially its gradients – in different
cellular contexts is one of the key challenges of the coming years.

Nucleation
Profilin prevents the spontaneous association of actin monomers
into actin dimers and trimers, which are necessary intermediates
prior to the formation of actin filaments (Dominguez, 2009; Sept
and McCammon, 2001). These nucleation steps, which are
thermodynamically unfavorable, are accelerated by actin
nucleators (Fig. 1). Three main classes of actin nucleators have
been characterized: the Arp2/3 complex, the formin family and the
tandem monomer-binding protein family, including the proteins
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Spire and Cobl, which are proposed to cause nucleation by tethering
three or more actin monomers together (Campellone and Welch,
2010). The different mechanisms of action and the cellular
localization of these nucleators influence their physiological
properties and abilities to build specific actin structures. The
Arp2/3 complex and formins are also influenced by external signals
as their activity is controlled either directly or indirectly by
membrane-bound Rho GTPases (Lawson and Ridley, 2018;
Ridley, 2015). In addition, profilin has been shown to favor
formin-mediated assembly over Arp2/3 complex-based nucleation,
thus modulating homeostasis between different networks (Suarez
et al., 2015; Rotty et al., 2015).

Elongation and capping
Pointed ends do not grow in profilin-actin since profilin masks the
barbed face of the actin monomer, preventing addition to pointed
ends (Pollard et al., 2000). Therefore, in cellular conditions of
profilin-actin, networks that are generated by the Arp2/3 complex

grow with a rate that depends on the association rate constant for
monomer addition at the barbed ends (which is typically 10 per µM
per second, Pollard, 1986) and the concentration of polymerizable
actin monomers. Growth is terminated by a lack of monomers or by
capping proteins (Fig. 1). Therefore, the balance between rates of
growth and capping needs to be well-adjusted for the formation of
defined actin networks (Akin and Mullins, 2008; Blanchoin et al.,
2000a; Kawska et al., 2012). This balance is illustrated by a
comparison of the dynamics of two similar structures found in
different cells, where the actin monomer concentrations are very
different. For example, actin patches in yeast and cell lamellipodia
are both generated by the Arp2/3 complex and consist of highly
branched and intertangled actin networks (Young et al., 2004;
Svitkina and Borisy, 1999). Based on the concentration of available
monomers, the growth of a lamellipodium should be orders of
magnitude faster than a patch, but this is not the case because
capping proteins regulate growth in lamellipodia (Moseley and
Goode, 2006). Indeed, capping proteins are in fact necessary
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Fig. 1. The dynamic steady state of actin. The mininal steps needed to reach a dynamic steady state of different actin architectures are illustrated. Sequestered
and polymerizable actin represent the pool of actin monomers. Nucleation is the formation of actin dimers or trimers. Elongation and capping modulate
controlled growth of the different forms of actin organization (branched networks that are generated by the Arp2/3 complex or bundles generated by formins).
Disassembly and depolymerization results in the breakdown of actin structures to monomer subunits. Recycling renews the pool of actin monomers that are
charged with ATP. The different nucleotide states of actin, barbed and pointed ends and different proteins or complexes are represented by the indicated symbols.
The arrows at barbed (B) and pointed (P) ends indicate depolymerization, with larger arrows representing faster dissociation.
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for correct lamellipodia formation in motile cells with a high
concentration of monomers (Iwasa and Mullins, 2007). In contrast,
in S. cerevisiae, where monomer concentration is very low, capping
protein can be removed and actin patches still show a qualitatively
normal organization (Young et al., 2004). Growth of actin filaments
that is mediated by formin is even more complex because different
formins produce different association rate constants at filament
barbed ends (Chesarone and Goode, 2009). In addition, formin and
capping proteins function antagonistically at the barbed ends of
actin filaments to control their length through the formation of a
‘decision complex’, where capping protein and formin are
simultaneously bound to a paused barbed end. Depending on how
the complex decomposes, growth will resume or the filament will be
permanently capped, lending an extra layer of control to the
dynamics of the barbed end (Fig. 1, Bombardier et al., 2015;
Shekhar et al., 2015). Finally, formins are known to cooperate with
the Arp2/3 complex for the elongation of protrusive networks
(Block et al., 2012; Kage et al., 2017). Taken together, elongation
and capping, in the context of the amount of polymerizable
monomeric actin and the nature of the nucleating agent, are what
defines the dynamics of actin network growth.

Disassembly
Actin disassembly takes place in two steps: fragmentation of actin
networks into small filaments, and depolymerization into
monomers of the small actin fragments that were generated in this
process (Fig. 1, Blanchoin et al., 2014). Like nucleation or
elongation, disassembly depends on the nature of the network
(Gressin et al., 2015). A branched network disassembles mainly
through debranching that is mediated by the actin depolymerizing
factor (ADF)/cofilin family proteins or glia maturation factor-like
protein (GMF) (Blanchoin et al., 2000b; Chan et al., 2009; Gandhi
et al., 2010; Gressin et al., 2015). For parallel or antiparallel
networks of bundled filaments, the severing of filaments by ADF/
cofilin on its own is not sufficient to dismantle the structure entirely
(Gressin et al., 2015), but enough to maintain a steady state length,
at least for parallel bundles that are initiated by formin (Michelot
et al., 2007). Actin-interacting protein 1 (Aip1) is a necessary
cofactor that synergizes with ADF/cofilin and coronin proteins to
disassemble actin bundles (Nadkarni and Brieher, 2014; Gressin
et al., 2015; Jansen et al., 2015). For antiparallel contractile actin
networks, the contribution of the myosin motor protein during
disassembly is unclear, but actin filament buckling that is produced
by myosin contraction has been shown to lead to filament breakage
(Murrell and Gardel, 2012), and buckling might also favor severing
by ADF/cofilin. To be fully efficient, ADF/cofilin must work in
concert with capping proteins (Suarez et al., 2011). Indeed, the
presence of ATP or ADP-Pi-loaded subunits near a growing barbed
end prevents this region of the filament from being decorated by
ADF/cofilin (Suarez et al., 2011; Wioland et al., 2017). Barbed-end
capping terminates the growth of filaments within a structure, and
thus favors decoration of filaments by ADF/cofilin (Suarez et al.,
2011). Therefore, the disassembly of actin networks is intricately
linked to the growth and capping balance of the actin steady state, as
discussed above.
Until recently, a few puzzling questions remained concerning the

disassembly step. First, why do fragments that are generated by
ADF/cofilin not elongate rapidly until capped, thus reversing the
disassembly effect of ADF/cofilin? Second, how does rapid
disassembly from capped fragments occur? The rate constant of
depolymerization at pointed ends is only 0.27 per second, and
depolymerization would be much more efficient if it occurred at the

barbed end with a rate constant of 7.2 per second (Pollard, 1986).
Recently, these two questions have been elegantly addressed by
Wioland and co-workers, who showed that decoration with ADF/
cofilin – upon nearing the barbed end – dissociates capping protein
from that end (Wioland et al., 2017). Even more striking, barbed
ends of filaments that are saturated with ADF/cofilin do not grow
because ADF/cofilin prevents monomer addition (Wioland et al.,
2017). In other words, ADF/cofilin alters barbed end dynamics by
binding to the sides of the filament and changing its structure
(Tanaka et al., 2018), thus preventing capping protein binding and
monomer addition, while still allowing subunit dissociation (Fig. 1).
Other proteins, such as twinfilin and Srv2/cyclase-associated
protein (CAP), which accelerate depolymerization at the barbed and
pointed ends, can also participate in actin disassembly (Johnston
et al., 2015). Their collaborative effort depolymerizes a filament of
one micrometer length in less than a minute (Johnston et al., 2015).
How such depolymerization occurs on ADF/cofilin-decorated
filaments, or on small fragments that are generated by both ADF/
cofilin and Aip1, needs to be investigated. Srv2/CAP has also been
shown to enhance severing by ADF/cofilin (Chaudhry et al., 2013).
It is still unclear exactly how small fragments depolymerize into
single subunits. Recent advances in time-resolved electron
microscopy, combined with static and dynamic light scattering,
might help in the observation of these entities, which fall below the
diffraction limit (Frank, 2017; Lopez et al., 2016).

Recycling
An assembly-competent actin oligomer pool has previously been
proposed (Okreglak and Drubin, 2010; Smith et al., 2013); however,
for most reassembly processes, actin filaments must be broken down
into their individual monomers. Actin monomers are bound to ADP
when they dissociate from a filament (Blanchoin and Pollard, 1999).
These subunits therefore need to be reloaded with ATP to reintegrate
into the pool of sequestered or polymerizable actin (Fig. 1). As ADF/
cofilin bound to an actin subunit blocks nucleotide exchange (the rate
of nucleotide dissociation of ADF/cofilin-bound ADP-actin is 0.006
per second; Blanchoin and Pollard, 1998), profilin or Srv2/CAPact as
nucleotide exchanging factors: they dissociate ADF/cofilin from
ADP-actin subunits and load subunits with ATP (Blanchoin and
Pollard, 1998; Chaudhry et al., 2010; Gurel et al., 2015; Kotila et al.,
2018). This replenishes the pool of polymerizable actin (Fig. 1). In the
presence of high concentrations of Tβ4, as in platelets, the situation is
more complex, because thymosins also block nucleotide exchange
(Goldschmidt-Clermont et al., 1992; Xue et al., 2014). However. Tβ4
has a 100-fold higher affinity for ATP-actin compared with ADP-
actin monomers (Jean et al., 1994), so nucleotide exchange probably
occurs before thymosin binds monomers. This might occur through
formation of a transient ternary complex between Tβ4, actin
monomer and profilin, or other nucleotide-exchanging factors
(Yarmola et al., 2001). Overall, a complex choreography of actin-
binding proteins controls the recycling ofADP-actin monomers to the
polymerizable or sequestered ATP form.

Feedback
The huge variability in the structure of different forms of actin
organization, their growth rates and lifetimes beg the question as to
how the perfect match between assembly and disassembly rates and
maintenance of the pool of actin monomers is ensured in these
different contexts. This must be controlled by as yet unidentified
feedbackmechanisms. Is it a structural feedback, where network size,
structure and filament density affect actin dynamics, a mechanical
feedback, where tension and pressure regulate dynamics, or even a
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biochemical feedback, where polymerization depletes factors, thus
limiting assembly or disassembly? It is likely that it is a combination
of these different types of feedback. Structural feedback has been
observed recently in a reconstituted lamellipodium, where network
size and filament density have been shown to control network growth
rate (Boujemaa-Paterski et al., 2017). Force-dependent feedback
controls both the growth of branched networks generated by the
Arp2/3 complex (Bieling et al., 2016; Mueller et al., 2017; Plastino
and Blanchoin, 2017) and formin-mediated actin filament assembly
(Courtemanche et al., 2013; Jégou et al., 2013; Zimmermann et al.,
2017). Biochemical control is seen in the competition for actin
monomers between formin-based and Arp2/3-based actin networks
(Burke et al., 2014) or in local monomer depletion at sites of active
assembly that negatively impacts growth rate (Boujemaa-Paterski
et al., 2017). The identification and mechanistic understanding of the
different feedback loops that control cellular actin dynamics will
require a huge effort from both top-down and bottom-up approaches,
bridging the gap between investigations at molecular, cellular and
tissue levels.

Conclusions and perspectives
What are the limitations to achieving a complete understanding of
the dynamic steady state of actin networks? In vivo, the biggest
limitation is the observation of individual actin filaments whose
average lengths are 10 to 100 nm, which is below the diffraction
limit of light microscopy (Anderson et al., 2017). The development
of new super-resolution approaches and new fluorescent markers,
combined with electron microscopy, might help to fill this gap (Gao
et al., 2018; Skruber et al., 2018). However, a true understanding
will require visualization of the actin cytoskeleton in its native state,
imaging the coordinated dynamics of different subcellular actin
organizations. A step in this direction is the in vitro reconstitution
of a complete dynamic system, where branched networks,
parallel bundles and contractile antiparallel structures maintain a
coordinated steady state regime in a cell-sized environment that
mimics the limited supply of biochemical components in a real cell
(Burke et al., 2014). Growing different actin organizations has been
partially achieved using micropatterning approaches (Reymann
et al., 2010), but never with a combination of different nucleation
machineries. Growth must be initiated in the presence of both the
disassembly machinery and the proteins necessary to recycle actin
subunits back to the pool of polymerizable actin. Ideally, this
reconstituted system would allow for the modulation in real time of
the different actin organizations, such as changing the pattern of
nucleation to evaluate how the system responds and adapts to this
new configuration. One of the biggest challenges is determining the
operating concentrations for the different components of a complex
mixture incorporating nucleation, turnover and actin recycling
machinery. Parallelizing the experiments by means of microfluidics
will probably be necessary. The field is technically ready to tackle
this challenge, both in vitro and in vivo, but it will be necessary to
join forces, as the task is too complex for a single laboratory.
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